DOCUMENTATION TECHNIQUE

Infrastructure as Code
Terraform + Ansible + Proxmox

Projet: Déploiement automatisé de VMs

Auteur: Mamadou CAMARA
Date: Février 2026

SOMMAIRE :

1. Vue d’ensemble du projet
1.1 Technologies utilisées

1.2 Objectifs du projet

2. Architecture de Uinfrastructure

2.1 Schéma d’architecture

2.2 Spécifications des VMs
2.3 Flux de déploiement
3. Configuration Terraform

3.1 Structure du projet

3.2 Fichier main.tf

3.3 Variables Terraform

4. Configuration Ansible
4.1 Fichier d’inventaire (hosts.ini)
4.2 Playbook Apache (install_apache.yml)
4.3 Playbook MariaDB (install_mariadb.yml)

5. Guide de déploiement

5.1 Prérequis

5.2 Etape 1:
5.3 Etape 2:
5.4 Etape 3:
5.5 Etape 4 :
5.6 Etape 5:
5.7 Etape 6 :

© © N o o O o o a0 O b~ bp K

Préparation du template Proxmox

Initialisation Terraform

Déploiement des VMs

Configuration Ansible

Exécution des playbooks Ansible

Vérification

6. Commandes essentielles

6.1 Commandes Terraform

6.2 Commandes Ansible

11
11
11
12
12
13
14
15
16
16
16

6.3 Commandes Proxmox (qm)

7. Dépannage

7.1 Problémes Terraform

Erreur : APl connection failed

Erreur : Template 9001 not found
Etat Terraform corrompu

7.2 Problémes Ansible

Erreur : SSH connection failed

Erreur : sudo password required

Erreur : PyMySQL module not found

7.3 Problémes réseau

VM sans adresse IP

Conflitd’IP

Annexes

A. Arborescence compleéete du projet

B. Checklist de déploiement

C. Ressources et liens utiles

D. Bonnes pratiques

Conclusion

16
18

18
18
18
18

18
18
18
19

19
19
19

20
20
20
20
21
22

1. Vue d’ensemble du projet

Ce projet met en ceuvre une infrastructure automatisée utilisant Terraform
pour le provisioning de machines virtuelles sur Proxmox VE, et Ansible
pour la configuration des services applicatifs. L'objectif est de déployer
rapidement et de maniére reproductible des serveurs web avec Apache et
des bases de données MariaDB.

1.1 Technologies utilisées

Terraform v1.14.3 : Infrastructure as Code pour le provisioning
Proxmox VE : Plateforme de virtualisation

Ansible : Gestion de configuration et déploiement d’applications
Ubuntu 22.04/24.04 : Systéme d’exploitation des VMs

Apache2 : Serveur web

MariaDB : Systéme de gestion de base de données

1.2 Objectifs du projet

Automatiser le déploiement de 10 machines virtuelles

Standardiser la configuration des serveurs

Réduire le temps de provisioning de plusieurs heures a quelques minutes
Assurer la reproductibilité de l'infrastructure

Faciliter la scalabilité horizontale

2. Architecture de l'infrastructure

2.1 Schéma d’architecture

L’infrastructure est composée des éléments suivants :
» Serveur Proxmox VE (172.16.X.Y) : Hbte de virtualisation
* 10 VMs Ubuntu (VM-Mamadou-0 a VM-Mamadou-9)
+ Template VM (ID 9001) : Image de base pour le clonage

* Réseau : Bridge vmbr0 (172.16.X.0/24)
» Stockage : local pour les disques des VMs

2.2 Spécifications des VMs

Composant Valeur

CPU 2 cores

RAM 4098 MB (~4 GB)

Disque 36 GB

Réseau virtio (Bridge vmbrQ)

0S Ubuntu (clone du template 9001)

IP Assignée via DHCP (ex: 172.16.X.2)

2.3 Flux de déploiement
Le processus de déploiement suit le workflow suivant :

. Terraform plan — Analyse des ressources a créer
. Terraform apply — Création des 10 VMs par clonage

. Récupération des IPs des VMs créées

ansible-playbook -1 hosts.ini install mariadb.yml - Installation

1
2
3
4. ansible-playbook -i hosts.ini install apache.yml - Installation Apache
5.
MariaDB

6

. Vérification des services déployés

3. Configuration Terraform

3.1 Structure du projet

Le projet Terraform est organisé comme suit :

terraform/

— main.tf # Configuration principale
— variables.tf # Déclaration des variables
— terraform.tfvars # Valeurs des variables

— .terraform.lock.hcl # Verrouillage des providers
— terraform.tfstate # Etat de 1’infrastructure
L— terraform.tfstate.backup # Backup de 1l’état

3.2 Fichier main.tf

Le fichier main. t£ définit les ressources a provisionner :

3.3 Variables Terraform

Variable ' Description | Valeur
pm_api_url URL de I'API Proxmox https://172.16.X.Y:8006/api2/json
pm_user Token API utilisateur Token a récupérer sur Proxmox
pm_password Secret du token API Secret a récupérer lors de la
création du token
node Noceud Proxmox cible pve
vm_count qubre de VMs a 10
créer
vm_memory RAM par VM (MB) 4098
vm_cores CPU cores par VM 2

vm_disk_size Taille disque (GB) 36

storage Datastore Proxmox local-lvm

bridge Bridge réseau vmbrQO

4. Configuration Ansible

4.1 Fichier d’inventaire (hosts.ini)

Note : Pour gérer les 10 VMs, ajoutez les autres machines (VM-Mamadou-1 a VM-
Mamadou-9) avec leurs IPs respectives.

4.2 Playbook Apache (install_apache.yml)

Ce playbook installe et configure Apache2 :

4.3 Playbook MariaDB (install_mariadb.yml)

Ce playbook installe et sécurise MariaDB :

5. Guide de déploiement

5.1 Prérequis

* Terraform installé (v1.14+)

* Ansible installé (v2.9+)

* Acces API Proxmox configuré

+ Template VM (ID 9001) préparé dans Proxmox
+ Clés SSH configurées (~/.ssh/id_ed25519)

+ Connectivité réseau vers Proxmox et les VMs

5.2 Etape 1 : Préparation du template Proxmox

Créez un template Ubuntu dans Proxmox avec I'ID 9001 :

Télécharger 1’image Ubuntu Cloud

Créer la VM template

Importer le disque

Attacher le disque

Configurer cloud-init

Convertir en template

agm template 9001

5.3 Etape 2 : Initialisation Terraform

Se placer dans le dossier Terraform

cd terraform/

Initialiser Terraform
terraform init

$ terraform init

Initializing the backend...
Initializing provider plugins...
- Reusing previous version of bpg/proxmox from the dependency lock file
- Using previously-installed bpg/proxmox v0.93.1

Vérifier la configuration

terraform validate

Visualiser le plan d’exécution

terraform plan

: $ terraform plan
proxmox_virtual_environment_vm.vm[5]: Refreshing state...
proxmox_virtual_environment_vm.vm[t]: Refreshing state...
proxmox_virtual_environment_vm.vm[@]: Refreshing state...
proxmox_virtual_environment_vm.vm[3]: Refreshing state...
proxmox_virtual_environment_vm.vm[2]: Refreshing state...
proxmox_virtual_environment_vm.vm[9]: Refreshing state...
proxmox_virtual_environment_vm.vm[1]: Refreshing state...

proxmox_virtual_environment_vm.vm[7]: Refreshing state... [id=187]
proxmox_virtual_environment_vm.vm[8]: Refreshing state... [id=189]
proxmox_virtual_environment_vm.vm[6]: Refreshing state... [id=186]

Your infrastructure matches the configuration.

Terraform has compared your real infrastructure against your configuration and found no differences, so no changes are
needed.

5.4 Etape 3 : Déploiement des VMs

Appliquer la configuration

terraform apply

Confirmer avec : yes

Attendre la fin du provisioning (~5-10 minutes)

- . 5 &) 5 e
proxmox_virtual_environment_vm. : Still creating... [B1m36s elapsed]
proxmox_virtual_environment_vm. : Still creating... [Blmils elapsed]
proxmox_virtual_environment_vm. : Still creating... [Blmils elapsed]
proxmox_virtual_environment_vm. : Still creating... [Blmils elapsed]
proxmox_virtual_environment_vm. : Still creating... [Blmils elapsed]
proxmox_virtual_environment_vm. : Still creating... [B1m5Us elapsed]
proxmox_virtual_environment_vm. : Still creating... [0lm5Us elapsed]
proxmox_virtual_environment_vm. : Still creating... [@1m5Us elapsed]
proxmox_virtual_environment_vm. : Still creating... [P1m5Us elapsed]
proxmox_virtual_environment_vm. : Still creating... [02m@Us elapsed]
proxmox_virtual_environment_vm. : Still creating... [02m@Us elapsed]
proxmox_virtual_environment_vm. : Still creating... [P2meUs elapsed]
proxmox_virtual_environment_vm. : Still creating... [02mAUs elapsed]
proxmox_virtual_environment_vm. : Creation complete after 2ml3s [id=16u]
proxmox_virtual_environment_vm. : Creation complete after 2ml3s [id=186]
proxmox_virtual_environment_vm. : Still creating... [82mlUs elapsed]
proxmox_virtual_environment_vm. : Still creating... [82mlUs elapsed]
proxmox_virtual_environment_vm. : Creation complete after 2ml6s [id=185]
proxmox_virtual_environment_vm. : Creation complete after 2mlls [id=182]

5.5 Etape 4 : Configuration Ansible
Récupérez les IPs des VMs créées et mettez a jour hosts.ini :

Lister les VMs dans Proxmox

gm list | grep VM-Mamadou

Ou vérifier dans 1’interface web Proxmox

Server View

= Datacenter

5 105 (VM-Mamadou-3)
3 106 (VM-Mamadou-T)

¥ Virtual Maching 102 (VM-Mamadou-4) on node ‘pve’

Task History

lo Tags & Start

() Shutdown 3_ Console More

fo pre & Summary
i 100 (forgejo) >_ Console
b 103 (forgejo-runner) Q) Hardware Lm0 e
52 101 (VM-Mamadou-0) 48 it)
& Clouc-nit rmw enahled
5 102 (VM-Mamadou-4) th
2 104 (VM-Mamadou-6) & Options
(
(
(

@ Monitor
o 108 (VM-Mamadou-1)
L2 109 (VM-Mamadou-8) Backup
3 110 (WW-Mamadou-5) 13 Replication
111 (VM-Mamadou-2 node :
G2 111 (VW-Mamadou-2) D Snapshots sustend (1]
L} 112 (VM-Mamadou-9) ystemd|

(129000 (template-cloud-ni)
[E29001 (cloud-init)

(129100 (ubuntu-cloudinit-mytemplate)
ocalnetwork (pve)

§D local (pve)
Z{Jlocal-vm (pve)

U Firewall

o' Permissions

+AC

H0D +LIBCRYPTSETUP +LIBFDISK +P

+ZLIB +287D

BCOMMON +UTHP +

@ Help

Puils éditer hosts.ini

nano ansible/hosts.ini

5.6 Etape 5 : Exécution des playbooks Ansible

Se placer dans le dossier Ansible

cd ansible/

Tester la connectivité

ansible webservers -i hosts.ini -m ping

Installer Apache sur toutes les VMs

ansible-playbook -i hosts.ini install apache.yml

é ansible-playbook -i hosts.ini install_apache.yml

PLAY [Installer Apache sur la VM Ubuntu] #sdskssskookiohod ootk o fok koot ok koot ook koo & ok ok ootk koo ok

TASK [Gathering Facts] sttt i o oo i o ot e e e i e o e sk s el e e

TASK [Mettre & jour la Liste des paquets] skttt itttk bbbtk kbt Ak bbbk A ke

TASK [Installer Apache] wieiiohhhohhhbbbk bbbkt ok ok ook kR R AR oo ks

TASK [S'assurer que le service Apache est démarré et ACEIVE] skttt e e ke kel e e e sl e e e e s e e e s s e e e e e

[Créer une page HTML de test] kit oot i koot oo oo ook o oo oo

PLAY RECAP sk skt e ok o ks e sk o ks o ol o kol o e o ko o ke o kol o ok o o e e kel o okl o koo o o e o ke o kel e kol o o ook o ke o okl o o kol o ko o koo ke o ok kol ook o ok ke o ok

unreachable=@ failed=® skipped=0 rescued=8 ignored=0

Installer MariaDB

ansible-playbook -i hosts.ini install mariadb.yml

5.7 Etape 6 : Vérification
Tester Apache

curl http://Ip-VM

Devrait afficher : Bienvenue sur Apache !

Vérifier MariaDB
ansible webservers -i hosts.ini -m shell \

-a "systemctl status mariadb" -Db

6. Commandes essentielles

6.1 Commandes Terraform

Commande Description

terraform init Initialise le projet et télécharge les
providers

terraform plan Affiche les changements a apporter

terraform apply Applique les modifications

terraform destroy Détruit toute I'infrastructure

terraform state list Liste les ressources dans I'état

terraform show Affiche I'état actuel

terraform validate Valide la syntaxe des fichiers

terraform fmt Formate les fichiers .tf

terraform output Affiche les outputs définis

terraform refresh Synchronise I'état avec la réalité

6.2 Commandes Ansible

Commande Description

ansible all -m ping Test de connectivité
ansible-playbook playbook.yml Exécute un playbook
ansible-playbook -C playbook.ymi Mode dry-run (simulation)
ansible-playbook -v playbook.yml Mode verbeux

ansible-playbook --check playbook.ymi Vérifie sans appliquer

ansible webservers -a "uptime" Exécute une commande
ansible-inventory --list Liste 'inventaire

ansible-doc apt Documentation d’'un module
ansible-playbook --tags apache Exécute uniquement certains tags
ansible-vault encrypt file Chiffre un fichier sensible

6.3 Commandes Proxmox (qm)

Commande Description

gm list Liste toutes les VMs

gm status <vmid> Statut d’'une VM

gm start <vmid> Démarre une VM

gm stop <vmid> Arréte une VM

gm shutdown <vmid> Arrét propre d’'une VM

gm destroy <vmid> Supprime une VM

gm clone <vmid> <newid> Clone une VM

gm config <vmid> Affiche la config d’'une VM
gm terminal <vmid> Console série de la VM

pvesh get /nodes/pve/qgemu API : liste VMs

7. Dépannage

7.1 Problemes Terraform

Erreur : APl connection failed
Vérifier 1’acceées API

curl -k https://172.16.X.Y:8006/api2/json

Vérifier les credentials dans terraform.tfvars

Vérifier que le token API est valide dans Proxmox

Erreur : Template 9001 not found
Vérifier 1’existence du template

gqm list | grep 9001

Créer le template si nécessaire (voir section 5.2)

Etat Terraform corrompu
Restaurer depuis le backup

cp terraform.tfstate.backup terraform.tfstate

Ou synchroniser avec 1l’infrastructure réelle

terraform refresh

7.2 Problemes Ansible

Erreur : SSH connection failed
Vérifier la connectivité

ping IP VM

Tester SSH manuellement

ssh -i ~/.ssh/id ed25519 mamadou@ip-VM

Vérifier les permissions de la clé

chmod 600 ~/.ssh/id ed25519

Erreur : sudo password required
Configurer sudo sans mot de passe

ssh mamadou@IP-VM

echo "mamadou ALL=(ALL) NOPASSWD:ALL" | \

sudo tee /etc/sudoers.d/mamadou

Erreur : PyMySQL module not found
Le playbook MariaDB installe automatiquement PyMySQL
Si erreur persiste, installer manuellement
ansible webservers -i hosts.ini -m apt \
-a "name=python3-pip state=present" -Db
ansible webservers -i hosts.ini -m pip \

-a "name=PyMySQL" -b

7.3 Problemes réseau

VM sans adresse IP
Vérifier le service DHCP
Vérifier la configuration cloud-init du template
Redémarrer la VM

gm shutdown <vmid> && gm start <vmid>

Conflit d’IP

Vérifier les IPs utilisées

nmap -sn 172.16.X.0/24

Configurer des IPs statiques dans cloud-init si nécessaire

Annexes

A. Arborescence compléte du projet

projet/
|— terraform/
I— main.tf

|

| F—— variables.tf

| F—— terraform.tfvars

| F—— .terraform.lock.hcl
| F—— terraform.tfstate

| L— terraform.tfstate.backup
F—— ansible/

| F—— hosts.ini

| F—— install apache.yml
| — install mariadb.yml
L — README.md

B. Checklist de déploiement
« [Template Proxmox créé (ID 9001)

« [Clés SSH générées et configurées

+ [Token APl Proxmox crée et testé

* [Terraform initialisé (terraform init)

« [Variables configurées dans terraform.tfvars
« [Plan Terraform vérifié (terraform plan)

« [Infrastructure déployée (terraform apply)
[IPs des VMs récupérées

* [Fichier hosts.ini mis a jour

« [Connectivité Ansible testée (ping)

+ [Playbook Apache exécuté

« [Playbook MariaDB exécuté

« [Services vérifiés et fonctionnels

C. Ressources et liens utiles

Documentation Terraform : https://terraform.io/docs

Provider Proxmox : https://registry.terraform.io/providers/bpg/proxmox
Documentation Ansible : https://docs.ansible.com

Proxmox VE : https://pve.proxmox.com/wiki/Main_Page

Ubuntu Cloud Images : https://cloud-images.ubuntu.com

. Bonnes pratiques

Toujours versionner le code Terraform et Ansible (Git)

Ne jamais committer les fichiers .tfstate ou terraform.tfvars
Utiliser Ansible Vault pour les secrets (mots de passe MariaDB)
Tester les playbooks en mode --check avant application
Documenter les changements d’infrastructure

Maintenir des backups réguliers du tfstate

Utiliser des tags Git pour les versions stables

Automatiser les déploiements avec CI/CD si possible

Conclusion

Ce projet démontre la puissance de I'Infrastructure as Code en combinant Terraform
pour le provisioning et Ansible pour la configuration. L’automatisation compléte permet
de déployer 10 serveurs web avec Apache et MariaDB en quelques minutes, de
maniére reproductible et documentée.

Les avantages de cette approche incluent :

+ Rapidité de déploiement : passage de plusieurs heures a ~15 minutes
* Reproductibilité : infrastructure identique a chaque déploiement

« Scalabilité : ajout de VMs en modifiant simplement vm_count

+ Documentation vivante : le code est la documentation

* Versioning : suivi des changements via Git

* Récupération rapide : reconstruction compléte en cas de probléme

Ce document constitue une base solide pour étendre l'infrastructure avec d’autres
services (nginx, PostgreSQL, Docker, Kubernetes) ou pour migrer vers un
environnement cloud (AWS, Azure, GCP) en adaptant simplement les providers
Terraform.

Fin de la documentation technique

