

DOCUMENTATION TECHNIQUE

Infrastructure as Code

Terraform + Ansible + Proxmox

Projet: Déploiement automatisé de VMs

Auteur: Mamadou CAMARA

Date: Février 2026

SOMMAIRE :

1. Vue d’ensemble du projet _____________________________________ 4
1.1 Technologies utilisées ___ 4

1.2 Objectifs du projet ___ 4

2. Architecture de l’infrastructure _________________________________ 5
2.1 Schéma d’architecture ___ 5

2.2 Spécifications des VMs __ 5

2.3 Flux de déploiement ___ 5

3. Configuration Terraform _______________________________________ 6
3.1 Structure du projet ___ 6

3.2 Fichier main.tf ___ 6

3.3 Variables Terraform __ 7

4. Configuration Ansible ___ 9
4.1 Fichier d’inventaire (hosts.ini) ____________________________________ 9

4.2 Playbook Apache (install_apache.yml) ____________________________ 9

4.3 Playbook MariaDB (install_mariadb.yml) ________________________ 10

5. Guide de déploiement _______________________________________ 11
5.1 Prérequis __ 11

5.2 Étape 1 : Préparation du template Proxmox _____________________ 11

5.3 Étape 2 : Initialisation Terraform ________________________________ 12

5.4 Étape 3 : Déploiement des VMs _________________________________ 12

5.5 Étape 4 : Configuration Ansible _________________________________ 13

5.6 Étape 5 : Exécution des playbooks Ansible ______________________ 14

5.7 Étape 6 : Vérification ___ 15

6. Commandes essentielles ____________________________________ 16
6.1 Commandes Terraform __ 16

6.2 Commandes Ansible ___ 16

6.3 Commandes Proxmox (qm) _____________________________________ 16

7. Dépannage ___ 18
7.1 Problèmes Terraform __ 18

Erreur : API connection failed ______________________________________ 18
Erreur : Template 9001 not found __________________________________ 18
État Terraform corrompu __ 18

7.2 Problèmes Ansible ___ 18
Erreur : SSH connection failed _____________________________________ 18
Erreur : sudo password required ___________________________________ 18
Erreur : PyMySQL module not found ________________________________ 19

7.3 Problèmes réseau ___ 19
VM sans adresse IP ___ 19
Conflit d’IP __ 19

Annexes ___ 20
A. Arborescence complète du projet _______________________________ 20

B. Checklist de déploiement _______________________________________ 20

C. Ressources et liens utiles _______________________________________ 20

D. Bonnes pratiques ___ 21

Conclusion ___ 22

1. Vue d’ensemble du projet

Ce projet met en œuvre une infrastructure automatisée utilisant Terraform
pour le provisioning de machines virtuelles sur Proxmox VE, et Ansible
pour la configuration des services applicatifs. L’objectif est de déployer
rapidement et de manière reproductible des serveurs web avec Apache et
des bases de données MariaDB.

1.1 Technologies utilisées

• Terraform v1.14.3 : Infrastructure as Code pour le provisioning

• Proxmox VE : Plateforme de virtualisation

• Ansible : Gestion de configuration et déploiement d’applications

• Ubuntu 22.04/24.04 : Système d’exploitation des VMs

• Apache2 : Serveur web

• MariaDB : Système de gestion de base de données

1.2 Objectifs du projet

• Automatiser le déploiement de 10 machines virtuelles

• Standardiser la configuration des serveurs

• Réduire le temps de provisioning de plusieurs heures à quelques minutes

• Assurer la reproductibilité de l’infrastructure

• Faciliter la scalabilité horizontale

2. Architecture de l’infrastructure

2.1 Schéma d’architecture

L’infrastructure est composée des éléments suivants :

• Serveur Proxmox VE (172.16.X.Y) : Hôte de virtualisation

• 10 VMs Ubuntu (VM-Mamadou-0 à VM-Mamadou-9)

• Template VM (ID 9001) : Image de base pour le clonage

• Réseau : Bridge vmbr0 (172.16.X.0/24)

• Stockage : local pour les disques des VMs

2.2 Spécifications des VMs

Composant Valeur

CPU 2 cores

RAM 4098 MB (~4 GB)

Disque 36 GB

Réseau virtio (Bridge vmbr0)

OS Ubuntu (clone du template 9001)

IP Assignée via DHCP (ex: 172.16.X.Z)

2.3 Flux de déploiement

Le processus de déploiement suit le workflow suivant :

1. Terraform plan → Analyse des ressources à créer

2. Terraform apply → Création des 10 VMs par clonage

3. Récupération des IPs des VMs créées

4. ansible-playbook -i hosts.ini install_apache.yml → Installation Apache

5. ansible-playbook -i hosts.ini install_mariadb.yml → Installation

MariaDB

6. Vérification des services déployés

3. Configuration Terraform

3.1 Structure du projet

Le projet Terraform est organisé comme suit :

terraform/

├── main.tf # Configuration principale

├── variables.tf # Déclaration des variables

├── terraform.tfvars # Valeurs des variables

├── .terraform.lock.hcl # Verrouillage des providers

├── terraform.tfstate # État de l’infrastructure

└── terraform.tfstate.backup # Backup de l’état

3.2 Fichier main.tf

Le fichier main.tf définit les ressources à provisionner :

terraform {

 required_providers {

 proxmox = {

 source = "bpg/proxmox"

 version = ">=0.50.0"

 }

 }

}

provider "proxmox" {

 endpoint = var.pm_api_url

 api_token = "${var.pm_user}=${var.pm_password}"

 insecure = true

}

resource "proxmox_virtual_environment_vm" "vm" {

 count = var.vm_count

 name = "VM-Mamadou-${count.index}"

 node_name = var.node

 cpu {

 cores = var.vm_cores

 }

 memory {

 dedicated = var.vm_memory

 }

 disk {

 datastore_id = var.storage

 size = var.vm_disk_size

 interface = "scsi0"

 }

 network_device {

 model = "virtio"

 bridge = var.bridge

 }

 clone {

 vm_id = 9001

 }

}

3.3 Variables Terraform

Variable Description Valeur

pm_api_url URL de l’API Proxmox https://172.16.X.Y:8006/api2/json

pm_user Token API utilisateur Token à récupérer sur Proxmox

pm_password Secret du token API Secret à récupérer lors de la
création du token

node Nœud Proxmox cible pve

vm_count Nombre de VMs à
créer

10

vm_memory RAM par VM (MB) 4098

vm_cores CPU cores par VM 2

vm_disk_size Taille disque (GB) 36

storage Datastore Proxmox local-lvm

bridge Bridge réseau vmbr0

4. Configuration Ansible

4.1 Fichier d’inventaire (hosts.ini)

Le fichier hosts.ini définit les hôtes cibles pour Ansible :

[webservers]

VM-Mamadou-0 ansible_host=IP-VM crée \

 ansible_user=mamadou \

 ansible_private_key_file=~/.ssh/id_ed25519

Note : Pour gérer les 10 VMs, ajoutez les autres machines (VM-Mamadou-1 à VM-
Mamadou-9) avec leurs IPs respectives.

4.2 Playbook Apache (install_apache.yml)

Ce playbook installe et configure Apache2 :

- name: Installer Apache sur la VM Ubuntu

 hosts: webservers

 become: yes

 tasks:

 - name: Mettre à jour la liste des paquets

 apt:

 update_cache: yes

 - name: Installer Apache

 apt:

 name: apache2

 state: present

 - name: S’assurer que le service Apache est démarré

 service:

 name: apache2

 state: started

 enabled: yes

 - name: Créer une page HTML de test

 copy:

 dest: /var/www/html/index.html

 content: "<h1>Bienvenue sur Apache !</h1>"

 owner: www-data

 group: www-data

 mode: ‘0644’

4.3 Playbook MariaDB (install_mariadb.yml)

Ce playbook installe et sécurise MariaDB :

- name: Installer et configurer MariaDB

 hosts: webservers

 become: yes

 tasks:

 - name: Mettre à jour la liste des paquets

 apt:

 update_cache: yes

 - name: Installer MariaDB

 apt:

 name: mariadb-server

 state: present

 - name: Installer PyMySQL

 pip:

 name: PyMySQL

 executable: pip3

 - name: Configurer le mot de passe root

 mysql_user:

 name: root

 password: "VotreMotDePasse"

 login_unix_socket: /var/run/mysqld/mysqld.sock

5. Guide de déploiement

5.1 Prérequis

• Terraform installé (v1.14+)

• Ansible installé (v2.9+)

• Accès API Proxmox configuré

• Template VM (ID 9001) préparé dans Proxmox

• Clés SSH configurées (~/.ssh/id_ed25519)

• Connectivité réseau vers Proxmox et les VMs

5.2 Étape 1 : Préparation du template Proxmox

Créez un template Ubuntu dans Proxmox avec l’ID 9001 :

Télécharger l’image Ubuntu Cloud

wget https://cloud-images.ubuntu.com/jammy/current/\

 jammy-server-cloudimg-amd64.img

Créer la VM template

qm create 9001 --name ubuntu-template --memory 2048 \

 --cores 1 --net0 virtio,bridge=vmbr0

Importer le disque

qm importdisk 9001 jammy-server-cloudimg-amd64.img \

 local-lvm

Attacher le disque

qm set 9001 --scsihw virtio-scsi-pci \

 --scsi0 local-lvm:vm-9001-disk-0

Configurer cloud-init

qm set 9001 --ide2 local-lvm:cloudinit

qm set 9001 --boot c --bootdisk scsi0

qm set 9001 --serial0 socket --vga serial0

qm set 9001 --ciuser mamadou

qm set 9001 --sshkeys ~/.ssh/id_ed25519.pub

Convertir en template

qm template 9001

5.3 Étape 2 : Initialisation Terraform

Se placer dans le dossier Terraform

cd terraform/

Initialiser Terraform

terraform init

Vérifier la configuration

terraform validate

Visualiser le plan d’exécution

terraform plan

5.4 Étape 3 : Déploiement des VMs

Appliquer la configuration

terraform apply

Confirmer avec : yes

Attendre la fin du provisioning (~5-10 minutes)

5.5 Étape 4 : Configuration Ansible

Récupérez les IPs des VMs créées et mettez à jour hosts.ini :

Lister les VMs dans Proxmox

qm list | grep VM-Mamadou

Ou vérifier dans l’interface web Proxmox

Puis éditer hosts.ini

nano ansible/hosts.ini

5.6 Étape 5 : Exécution des playbooks Ansible

Se placer dans le dossier Ansible

cd ansible/

Tester la connectivité

ansible webservers -i hosts.ini -m ping

Installer Apache sur toutes les VMs

ansible-playbook -i hosts.ini install_apache.yml

Installer MariaDB

ansible-playbook -i hosts.ini install_mariadb.yml

5.7 Étape 6 : Vérification

Tester Apache

curl http://Ip-VM

Devrait afficher : Bienvenue sur Apache !

Vérifier MariaDB

ansible webservers -i hosts.ini -m shell \

 -a "systemctl status mariadb" -b

6. Commandes essentielles

6.1 Commandes Terraform

Commande Description

terraform init Initialise le projet et télécharge les
providers

terraform plan Affiche les changements à apporter

terraform apply Applique les modifications

terraform destroy Détruit toute l’infrastructure

terraform state list Liste les ressources dans l’état

terraform show Affiche l’état actuel

terraform validate Valide la syntaxe des fichiers

terraform fmt Formate les fichiers .tf

terraform output Affiche les outputs définis

terraform refresh Synchronise l’état avec la réalité

6.2 Commandes Ansible

Commande Description

ansible all -m ping Test de connectivité

ansible-playbook playbook.yml Exécute un playbook

ansible-playbook -C playbook.yml Mode dry-run (simulation)

ansible-playbook -v playbook.yml Mode verbeux

ansible-playbook --check playbook.yml Vérifie sans appliquer

ansible webservers -a "uptime" Exécute une commande

ansible-inventory --list Liste l’inventaire

ansible-doc apt Documentation d’un module

ansible-playbook --tags apache Exécute uniquement certains tags

ansible-vault encrypt file Chiffre un fichier sensible

6.3 Commandes Proxmox (qm)

Commande Description

qm list Liste toutes les VMs

qm status <vmid> Statut d’une VM

qm start <vmid> Démarre une VM

qm stop <vmid> Arrête une VM

qm shutdown <vmid> Arrêt propre d’une VM

qm destroy <vmid> Supprime une VM

qm clone <vmid> <newid> Clone une VM

qm config <vmid> Affiche la config d’une VM

qm terminal <vmid> Console série de la VM

pvesh get /nodes/pve/qemu API : liste VMs

7. Dépannage

7.1 Problèmes Terraform

Erreur : API connection failed

Vérifier l’accès API

curl -k https://172.16.X.Y:8006/api2/json

Vérifier les credentials dans terraform.tfvars

Vérifier que le token API est valide dans Proxmox

Erreur : Template 9001 not found

Vérifier l’existence du template

qm list | grep 9001

Créer le template si nécessaire (voir section 5.2)

État Terraform corrompu

Restaurer depuis le backup

cp terraform.tfstate.backup terraform.tfstate

Ou synchroniser avec l’infrastructure réelle

terraform refresh

7.2 Problèmes Ansible

Erreur : SSH connection failed

Vérifier la connectivité

ping IP VM

Tester SSH manuellement

ssh -i ~/.ssh/id_ed25519 mamadou@ip-VM

Vérifier les permissions de la clé

chmod 600 ~/.ssh/id_ed25519

Erreur : sudo password required

Configurer sudo sans mot de passe

ssh mamadou@IP-VM

echo "mamadou ALL=(ALL) NOPASSWD:ALL" | \

 sudo tee /etc/sudoers.d/mamadou

Erreur : PyMySQL module not found

Le playbook MariaDB installe automatiquement PyMySQL

Si erreur persiste, installer manuellement :

ansible webservers -i hosts.ini -m apt \

 -a "name=python3-pip state=present" -b

ansible webservers -i hosts.ini -m pip \

 -a "name=PyMySQL" -b

7.3 Problèmes réseau

VM sans adresse IP

Vérifier le service DHCP

Vérifier la configuration cloud-init du template

Redémarrer la VM

qm shutdown <vmid> && qm start <vmid>

Conflit d’IP

Vérifier les IPs utilisées

nmap -sn 172.16.X.0/24

Configurer des IPs statiques dans cloud-init si nécessaire

Annexes

A. Arborescence complète du projet

projet/

├── terraform/

│ ├── main.tf

│ ├── variables.tf

│ ├── terraform.tfvars

│ ├── .terraform.lock.hcl

│ ├── terraform.tfstate

│ └── terraform.tfstate.backup

├── ansible/

│ ├── hosts.ini

│ ├── install_apache.yml

│ └── install_mariadb.yml

└── README.md

B. Checklist de déploiement

• ☐ Template Proxmox créé (ID 9001)

• ☐ Clés SSH générées et configurées

• ☐ Token API Proxmox créé et testé

• ☐ Terraform initialisé (terraform init)

• ☐ Variables configurées dans terraform.tfvars

• ☐ Plan Terraform vérifié (terraform plan)

• ☐ Infrastructure déployée (terraform apply)

• ☐ IPs des VMs récupérées

• ☐ Fichier hosts.ini mis à jour

• ☐ Connectivité Ansible testée (ping)

• ☐ Playbook Apache exécuté

• ☐ Playbook MariaDB exécuté

• ☐ Services vérifiés et fonctionnels

C. Ressources et liens utiles

• Documentation Terraform : https://terraform.io/docs

• Provider Proxmox : https://registry.terraform.io/providers/bpg/proxmox

• Documentation Ansible : https://docs.ansible.com

• Proxmox VE : https://pve.proxmox.com/wiki/Main_Page

• Ubuntu Cloud Images : https://cloud-images.ubuntu.com

D. Bonnes pratiques

• Toujours versionner le code Terraform et Ansible (Git)

• Ne jamais committer les fichiers .tfstate ou terraform.tfvars

• Utiliser Ansible Vault pour les secrets (mots de passe MariaDB)

• Tester les playbooks en mode --check avant application

• Documenter les changements d’infrastructure

• Maintenir des backups réguliers du tfstate

• Utiliser des tags Git pour les versions stables

• Automatiser les déploiements avec CI/CD si possible

Conclusion

Ce projet démontre la puissance de l’Infrastructure as Code en combinant Terraform
pour le provisioning et Ansible pour la configuration. L’automatisation complète permet
de déployer 10 serveurs web avec Apache et MariaDB en quelques minutes, de
manière reproductible et documentée.

Les avantages de cette approche incluent :

• Rapidité de déploiement : passage de plusieurs heures à ~15 minutes

• Reproductibilité : infrastructure identique à chaque déploiement

• Scalabilité : ajout de VMs en modifiant simplement vm_count

• Documentation vivante : le code est la documentation

• Versioning : suivi des changements via Git

• Récupération rapide : reconstruction complète en cas de problème

Ce document constitue une base solide pour étendre l’infrastructure avec d’autres
services (nginx, PostgreSQL, Docker, Kubernetes) ou pour migrer vers un
environnement cloud (AWS, Azure, GCP) en adaptant simplement les providers
Terraform.

Fin de la documentation technique

